Matrix Lie Group

Matrix Lie Groups

Matrix Lie Group
Notation
Field
Property

General Linear Group

GL(n)

C or R

n×n invertible matrices

Special Linear Group

SL(n)

C or R

GL(n), det⁡=1

Unitary Group

U(n)

C

GL(n), U^∗=U^(-1)

Special Unitary Group

SU(n)

C

GL(n), U^∗=U^(-1), det⁡=1

Orthogonal Group

O(n)

R

GL(n), R^⊤=R^(-1)

Special Orthogonal Group

SO(n)

R

GL(n), R^⊤=R^(-1), det⁡=1

Euclidean Group

E(n)

R

GL(n+1), T= [R p; 0 1]

Special Euclidean Group

SE(n)

R

GL(n+1), T= [R p; 0 1], det⁡=1

  • Notes: A matrix Lie group is a closed subgroup of GL(n, C). The common binary operation is matrix multiplication.

  • Please see the textbook “Lie Groups, Lie Algebras, and Representations” by Brian C. Hall for more details.

Last updated