Matrix Lie Group
Matrix Lie Groups
Matrix Lie Group | Notation | Field | Property |
---|---|---|---|
General Linear Group | GL(n) | C or R | n×n invertible matrices |
Special Linear Group | SL(n) | C or R | GL(n), det=1 |
Unitary Group | U(n) | C | GL(n), U^∗=U^(-1) |
Special Unitary Group | SU(n) | C | GL(n), U^∗=U^(-1), det=1 |
Orthogonal Group | O(n) | R | GL(n), R^⊤=R^(-1) |
Special Orthogonal Group | SO(n) | R | GL(n), R^⊤=R^(-1), det=1 |
Euclidean Group | E(n) | R | GL(n+1), T= [R p; 0 1] |
Special Euclidean Group | SE(n) | R | GL(n+1), T= [R p; 0 1], det=1 |
Notes: A matrix Lie group is a closed subgroup of GL(n, C). The common binary operation is matrix multiplication.
Please see the textbook “Lie Groups, Lie Algebras, and Representations” by Brian C. Hall for more details.
Last updated