Matrix Lie Group
Matrix Lie Groups
Matrix Lie Group
Notation
Field
Property
General Linear Group
GL(n)
C or R
nĆn invertible matrices
Special Linear Group
SL(n)
C or R
GL(n), detā”=1
Unitary Group
U(n)
C
GL(n), U^ā=U^(-1)
Special Unitary Group
SU(n)
C
GL(n), U^ā=U^(-1), detā”=1
Orthogonal Group
O(n)
R
GL(n), R^ā¤=R^(-1)
Special Orthogonal Group
SO(n)
R
GL(n), R^ā¤=R^(-1), detā”=1
Euclidean Group
E(n)
R
GL(n+1), T= [R p; 0 1]
Special Euclidean Group
SE(n)
R
GL(n+1), T= [R p; 0 1], detā”=1
Notes: A matrix Lie group is a closed subgroup of GL(n, C). The common binary operation is matrix multiplication.
Please see the textbook āLie Groups, Lie Algebras, and Representationsā by Brian C. Hall for more details.
Last updated
Was this helpful?